
Performance Measures 

 

This note provides a detailed description of the measures used in this study to quantitatively and 

objectively evaluate the performance of the particle tracking methods. 

 

INTRODUCTION 

The problem of performance evaluation of tracking methods occurs in many fields, including computer 

vision, aerospace applications (radar tracking, navigation, traffic control), and biomedical research. 

Despite much consideration in the past decades,1-3 there is as yet no single, well-accepted method to 

evaluate overall tracking performance. This can be explained by the fact that different application areas 

may be concerned with different aspects of track estimation and, consequently, may require different 

performance measures. In particular, measures proposed in other fields are often not applicable to 

biological particle tracking, where one is faced with a priori unknown and varying numbers of particles, 

whose identities are to be preserved throughout the image sequence.4,5 

 

A key aspect of comparing a set of estimated objects to a set of known but possibly a different number 

of ground-truth objects, is the pairing of their elements: which element in the former should be 

compared to which element in the latter? A sensible approach to solving this problem for sets of 

positions is the use of optimal subpattern assignment.6,7 This concept has recently also been extended to 

sets of labeled object tracks.8 The evaluation of particle tracking methods in the present study was based 

on the same underlying idea, as described in detail below. Nevertheless, in order to have a complete and 

intuitive characterization of the performance of the different methods, a set of complementary 

performance measures was used, rather than a single measure. 

 

TRACK DEFINITION 

A track is a temporal series of subsequent spatial positions. The spatial position at a given time point 

    is a vector                      , with     ,     , and      the coordinates at this time along 

the respective axes of the image. In a 3D image sequence, all three coordinates may vary, while in a 2D 

image sequence, the   coordinate is fixed. A track   existing from time         to time            is 

therefore defined as the set                          . Missing positions in the interval              are 

marked as non-matching and are penalized as described below. 

 



DISTANCE BETWEEN TWO TRACKS 

For the purpose of measuring the distance between two tracks, the following gated Euclidean distance 

between two positions       and       is defined: 

                                       

with        the standard    norm of   , and      the gate. The rationale behind the use of the gate   is 

to limit the penalization of tracks that separate. When two tracks are more than   apart at any time  , it 

is indeed considered that their positions do not match at that time point. In that case, it is irrelevant to 

measure the actual distance between these positions, and a fixed penalty   is used instead. In the 

context of this study, the value of   was set to 5 pixels, which, for the imaging parameters simulated in 

our data, was on the order of the Rayleigh criterion.9,10 In other words, the required minimum distance 

between diffraction-limited particles to allow visual separation (Rayleigh), was taken as the maximum 

tolerable distance for the particle tracking methods. 

 

It may happen that two tracks have different temporal supports. For instance,    may exist at a given 

time  , while    does not. In that case, we consider that the tracks do not match at that time point, and 

the distance between the tracks is defined to be equal to the penalty  . If neither of the two tracks exist 

at time  , their distance is defined to be 0. This allows for the following compact formulation of the 

distance   between any two tracks    and   : 

                          

   

   

 

where   is the length (the number of frames) of the image sequence. 

 

DISTANCE BETWEEN TWO TRACK SETS 

Let      
               be an ordered set of ground-truth tracks, and   a set of estimated tracks, 

whose similarity to   needs to be evaluated. Since some tracks in   may not match a track in  , or vice 

versa,   is extended with     dummy tracks that are empty. Let    denote this extended set of estimated 

tracks. Furthermore, let   be the ensemble of ordered sets of tracks that can be obtained by taking     

elements from   . The distance between any     and   is then defined as the sum of the distances 

between the     pairs of tracks given by the ordering of the two sets. This allows for the definition of the 

distance between   and   as the minimum distance between   and all possible  : 



          
   

     
    

  

   

   

 

Building the set of tracks      that minimizes the distance to  , involves reordering    and taking a 

subset of     elements from it. This task can be viewed as a rectangular assignment problem between 

the tracks in   and   . Because of the additivity and positivity of the cost of track association according to 

the above definition, this problem can be solved in polynomial time, using the Munkres algorithm.11 

 

PERFORMANCE MEASURES 

In order to evaluate the performance of any particle tracking method for any data, the output track set   

of the method was scored with respect to the ground-truth track set   of that data using the following 

measures, based on the optimal pairing        described above: 

1) The measure                       , where   denotes the set of     dummy tracks. By 

definition of         , the lower bound of        is 0, and the upper bound is       . Indeed, a pair 

of tracks    
    

   is guaranteed not to be selected by the optimization process if the distance 

between them is larger than the distance between   
  and a dummy track. The value of measure 

       therefore lies in the interval      . It takes value 1 if the pairs of tracks in   and    match 

exactly (the distance between each pair of tracks is 0). It takes value 0 if no valid match could be 

found, that is if     . It scores the best possible pairing of tracks between   and  , and ignores 

the tracks in   that did not make it into   . 

2) The measure                                        , where              denotes 

the set of tracks in   that did not make it into   , and   contains the appropriate number of dummy 

tracks, being     for        and      for        . A track in   may not have been selected for    

because either another estimated track or a dummy track was preferred over it. Such a spurious 

track typically consists of a combination of positions corresponding to different ground-truth tracks 

or to erroneous positions originating from clutter. The value of        lies in           . It takes 

value        if there are no spurious tracks in  , that is if     . And it converges to 0 as the 

number of spurious tracks increases. 

 

The measures   and   account for both association errors and localization errors. For a more detailed 

analysis, it is useful to separate these two types of errors. To evaluate association performance, the 

positions at time   of two paired tracks,   
     and   

  
   , are counted as matching if they are both non-



dummy and    
       

  
    

 
  . Otherwise, they are counted as non-matching, with the exception 

of two dummy positions, which are not counted. This leads to the following measures: 

3) The number of matching positions of the optimal pairs of tracks       . These are referred to as true 

positive (  ) position pairs. 

4) The number of positions in   that are paired with a dummy position in   . These are referred to as 

false negative (  ) position pairs because the dummy positions are nevertheless associated with 

track positions in the ground-truth set  . 

5) The number of positions in the spurious tracks    and the non-matching positions in   . These are 

referred to as false positive (  ) positions because they correspond to estimated positions that were 

not associated with track positions in the ground-truth set  . 

6) The Jaccard similarity coefficient12 for positions, defined as                  , which lies in 

the interval      . It takes value 1 only if all position pairs in        are matching and     . It 

converges to 0 as the number of non-matching pairs and/or positions in    increases. 

 

It may also be useful to evaluate the association performance at the track level, rather than the position 

level. This leads to the following measures, analogous to the previous four measures: 

7) The number of non-dummy tracks in   . They are referred to as true positive tracks (   ) because 

each of them contains a majority of matching positions with a single associated track in  . 

8) The number of dummy tracks in   . These are referred to as false negative tracks (   ) because 

each of them is nevertheless associated with a single track in  . 

9) The number of tracks in   . These are referred to as false positive tracks (   ) because none of them 

is associated with a track in  . 

10) The Jaccard similarity coefficient for tracks, defined as                       , which lies 

in the interval      . It takes value 1 only if    does not contain dummy tracks and     . It 

converges to 0 as the number of dummy tracks in    and/or tracks in    increases. 

 

Finally, the localization performance is characterized by the Euclidean distance (referred to as the error) 

between the positions of paired tracks. Since non-matching positions are already penalized by the above 

measures, the computation of localization errors is limited to matching positions: 

11) The root mean-square error (    ) in true positive position pairs (   as above). 

12) The minimum error (   ) in    position pairs. 

13) The maximum error (   ) in    position pairs. 



14) The standard deviation (  ) of error in    position pairs. 

 

EXAMPLE CASES AND PERFORMANCE VALUES 

To illustrate the effect of various tracking errors on the different performance measures, we provide 

several synthetic examples of increasing complexity. In the examples, a track is graphically represented 

as a series of point markers whose centers indicate the spatial position of the underlying particle at 

different time points, which are projected into a single image (Figure N1). The progression through time 

is indicated by a line connecting the point markers of the track. Tracks from the ground-truth set   are 

indicated by square-shaped markers connected by solid lines, while tracks from the estimated set   are 

indicated by cross-shaped markers connected by dotted lines. 

 

 

Figure N1: Ground-truth track defined for five successive time points (         ). In the 

sequel we will omit the time labels from the point markers and consider the left-most 

marker as the starting point of the track. 

 

CASE 1: NO ESTIMATED TRACKS 

We start with the pathological case in which we have a single particle with ground truth (  as given in 

Figure N1) and the particle tracking method could not find any part of the track (   ). In this case, by 

definition,      . Also, since there are no estimated tracks at all, we have          , and 

instead a dummy track is paired with the ground-truth track, yielding      , leading to       . 

Similarly, we have        , and since the ground-truth track covers five time points, we have the 

same number of matching dummy positions,     , yielding      . Without any    positions it is not 

possible to assess the localization performance of the tracking method. 

 

 

 



CASE 2: ESTIMATED TRACKS IDENTICAL TO GROUND-TRUTH TRACKS 

The other extreme is the case where the output of the particle tracking method is identical to the ground 

truth (    as in Figure N2). In this case, the number of matching tracks in   is exactly the number of 

elements in  , here      , and since there are no dummy or spurious tracks, we have         

 , and thus       . Similarly, the number of positions in   is exactly the number of positions in  , here 

    , and        , yielding      . Because the distance between each pair of estimated and 

ground-truth positions is  , we have      , and all localization errors are  . 

 

 

Figure N2: Ground-truth track (square-shaped markers connected by a solid line) with a 

perfectly matching estimated track (cross-shaped markers connected by a dotted line that 

is fully overlapping and thus not visible). The larger, light colored circles around the ground-

truth positions indicate the gate   within which estimated positions are searched. 

 

CASE 3: FULLY MATCHING BUT NOT IDENTICAL TRACKS 

In this example, we consider a similar situation as in Case 2, where an optimal pairing of estimated and 

ground-truth tracks is possible without the need for dummy tracks and without leaving spurious tracks, 

but where the estimated positions are not identical to the ground-truth positions, although they are 

within the gates of the latter (Figure N3). The distortions in the estimated positions affect only   and   

and the localization measures. Since there are no spurious tracks,    , and in this example both drop 

to      . The localization errors all become    (we refer to Table N1 at the end of this section for the 

values of the performance measures for all example cases discussed). 

 



 

Figure N3: Ground-truth track (squares connected by solid lines) with a paired estimated 

track (crosses connected by dotted lines) whose positions are not identical with, but fall 

within, the gates (light colored circles) of the ground-truth positions. 

 

CASE 4: MATCHING TRACKS HAVING NON-MATCHING POSITIONS 

Next, we reconsider the situation of Case 3, and move one of the estimated track positions out of the 

gate of the corresponding ground-truth track position (Figure N4). 

 

 

Figure N4: Estimated track (crosses connected by dotted lines) that is paired with a ground-

truth track (squares connected by solid lines) but with one position (underscored cross) 

falling outside the gate of the ground-truth track position (underscored square). 

 

As a result, this estimated position is considered non-matching with the ground truth, which translates 

into an increase in the number of false-positive positions,     . At the same time, the ground-truth 

position is now matched with a dummy position, leading to     , and since     , we have 

         . The dummy position receives a penalty that is larger than the localization error of the 

original position in Case 3, leading to a decrease of both   and  . Also, the computation of     , which 

is limited to    positions only, no longer includes the now non-matching position, whose localization 



error was relatively large, and as a result      slightly decreases while    slightly increases. All other 

performance measures remain unaffected by the change (Table N1). 

 

CASE 5: MATCHING TRACKS WITH BIRTH AND DEATH MISMATCHES 

In the previous examples we compared tracks (estimated versus ground truth) that were defined over 

the same time interval. Now we consider a case in which the existence window of the estimated track is 

shifted by one time point compared to the ground-truth track (Figure N5). This is representative of cases 

where a particle tracking method fails to detect the right birth and death times of a particle. 

 

 

Figure N5: Estimated track (crosses connected by dotted lines) that is paired with a ground-

truth track (squares connected by solid lines) but whose start and end positions do not 

correspond to the ground truth (all problematic positions are underscored). 

 

Since the majority of the track positions still match, the two tracks are paired by the track association 

algorithm, and similar to Case 4 only the performance measures accounting for position matching and 

localization errors are affected (Table N1). Specifically, since    further decreases to  , and    increases 

to  , and the number of matched dummy positions    also increases to 2,     drops to      , and both 

  and   significantly drop to      . Because we are now missing one more position (the left-most) with 

a relatively large localization error, again      slightly decreases and    slightly increases. 

 

CASE 6: MULTIPLE ESTIMATED AND GROUND-TRUTH TRACKS 

In the following examples (Cases 6-10) we consider multiple estimated and ground-truth tracks. Together 

they cover all the types of situations encountered in our study. As a first example we extend Case 5 with 

one additional estimated and corresponding ground-truth track (Figure N6). 

 



 

Figure N6: Multiple estimated tracks (crosses connected by dotted lines) that are paired 

with corresponding ground-truth tracks (squares connected by solid lines). The pairing 

produced by the track association algorithm is indicated by the coloring (the red estimated 

track is paired with the red ground-truth track, and similar for the green tracks). 

 

Since the newly added estimated track and ground-truth track match both spatially and temporally, with 

only small inaccuracies in the estimated positions, they are correctly paired by the track association 

algorithm. As a result, similar to Case 5, only the performance measures accounting for position 

matching and localization errors are affected (Table N1). In particular,    now increases to 8, making     

increase again to      , and also   and   increase significantly, to      . Because the newly added 

estimated track has relatively low localization errors, both      and    decrease. 

 

CASE 7: MISSING ESTIMATED TRACKS 

In this example we revisit Case 6 and consider the situation in which there are two ground-truth tracks 

but only one estimated track (Figure N7). This is representative of cases where a particle tracking 

method produces less tracks than the number of ground-truth tracks. The estimated track is paired with 

one of the ground-truth tracks (the one whose positions match best) while the remaining ground-truth 

track is matched with a dummy track. As a result,          , and since still      , we have 

        . Because the number of    positions decreases back to the level of Case 5, while the number 

of    positions increases by the same amount, the value of     now drops significantly, as do the values 



of both   and   (Table N1). And since localization errors are computed only for    positions, the values 

of the corresponding performance measures are the same as in Case 5. 

 

 

Figure N7: Two ground-truth tracks (squares connected by solid lines) but only one 

estimated track (crosses connected by dotted lines). The pairing produced by the track 

association algorithm is indicated by the coloring (the red estimated track is paired with the 

red ground-truth track while the green ground-truth track is paired with a dummy). 

 

CASE 8: SPURIOUS ESTIMATED TRACKS 

Here we again revisit Case 6, but consider the reverse situation as in Case 7, in that we now have two 

estimated tracks but only one ground-truth track (Figure N8). This is representative of cases where a 

particle tracking method produces more tracks than the number of ground-truth tracks. One of the 

estimated tracks (whose positions match best) is paired with the single ground-truth track while the 

other estimated track is considered spurious and remains non-paired. As a result,          , and 

since      , we still have         . Because the    and    positions are interchanged compared to 

Case 7, the value of     remains the same, but   increases back to the level of Case 5 (Table N1), as it 

does not penalize spurious tracks. And since localization errors are computed only for    positions, the 

values of the corresponding performance measures are the same as in Cases 5 and 7. 

 



 

Figure N8: Two estimated tracks (crosses connected by dotted lines) but only one ground-

truth track (squares connected by solid lines). The pairing produced by the track association 

algorithm is indicated by the coloring (the red estimated track is paired with the single 

ground-truth track while the green estimated track is considered spurious). 

 

CASE 9: BROKEN ESTIMATED TRACKS 

In this example we consider a similar situation as in Case 6 but with one of the two estimated tracks 

being broken into two pieces (Figure N9). This is representative of cases where a particle tracking 

method fails to bridge relatively large gaps between successive positions and produces broken tracks. In 

this case only one of the broken track segments (the one that matches best) is paired with the 

corresponding ground-truth track, and the other is considered spurious, yielding      . Since all 

ground-truth tracks are paired, we have       and      , resulting in           . Similarly, for 

the track positions we find      (two spurious and two non-matching positions),      (ground-

truth positions paired with a dummy position), and     , resulting in          . Compared to Cases 

7 and 8, both   and   increase because of a better matching of points, but they remain lower than in 

Case 6, and due to the presence of a spurious track they continue to have different values (Table N1). 

Since localization errors are computed only for    positions, the values of the corresponding 

performance measures are similar to those in Case 6. 

 



 

Figure N9: Two ground-truth tracks (squares connected by solid lines) but three estimated 

tracks (crosses connected by dotted lines) resulting from a linking failure. The pairing 

produced by the track association algorithm is indicated by the coloring (the red estimated 

track is paired with the red ground-truth track, and the green estimated track is paired with 

the green ground-truth track, while the black estimated track is considered spurious). 

 

CASE 10: MIXED UP ESTIMATED TRACKS 

In this last example we revisit Case 9 and consider estimated tracks consisting of detected particle 

positions belonging to different ground-truth tracks (Figure N10). This is representative of cases where a 

particle tracking method erroneously switches particle tracks. In the particular case considered here, one 

estimated track is paired with one of the ground-truth tracks, thus      , but the other estimated 

track does not match with the other ground-truth track, as the majority of its positions is too far off. It 

thus remains non-paired, yielding      , and consequently the ground-truth track is paired with a 

dummy track, yielding      , and thus           . In terms of positions we find that        , 

while     , resulting in          . Both   and   decrease compared to Case 9 (Table N1) while 

remaining different from each other due to the presence of a spurious track. Finally, the localization 

errors are now computed based on only three    positions, and are relatively small. 

 



 

Figure N10: Two ground-truth tracks (squares connected by solid lines) and two estimated 

tracks (crosses connected by dotted lines) resulting from linking failures. The pairing 

produced by the track association algorithm is indicated by the coloring (the green 

estimated track is paired with the green ground-truth track while the black estimated track 

is not paired but considered spurious). 

 

Table N1: Overview of the performance values for all discussed example cases. All floating-

point values are given with three decimal places. 

Case                                                   

1 0.000 0.000 0 5 0 0.000 0 1 0 0.000 - - - - 

2 1.000 1.000 5 0 0 1.000 1 0 0 1.000 0.000 0.000 0.000 0.000 

3 0.364 0.364 5 0 0 1.000 1 0 0 1.000 3.317 1.414 4.123 0.935 

4 0.308 0.308 4 1 1 0.667 1 0 0 1.000 3.240 1.414 4.123 1.018 

5 0.052 0.052 3 2 2 0.429 1 0 0 1.000 3.109 1.414 4.123 1.121 

6 0.256 0.256 8 2 2 0.667 2 0 0 1.000 2.894 1.414 4.123 0.822 

7 0.026 0.026 3 7 2 0.250 1 1 0 0.500 3.109 1.414 4.123 1.121 

8 0.052 0.026 3 2 7 0.250 1 0 1 0.500 3.109 1.414 4.123 1.121 

9 0.168 0.140 6 4 4 0.429 2 0 1 0.667 2.887 1.414 4.123 0.828 

10 0.142 0.089 3 7 7 0.176 1 1 1 0.333 2.646 2.236 2.828 0.279 
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