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Performance Evaluation for the ISBI’2012
Multiple Particle Tracking Challenge

The Challenge Committee

We describe hereafter the methods that are used for evaluating the results of the particle tracking challenge. Their is yet no
well-accepted method to measure the global tracking performance, in particular when tracking a varying number of particles in
a cluttered environment. We have therefore chosen to use a set of complementary criteria that will hopefully give a complete
and intuitive characterization of the tracking results. We have implemented these performance measures and they are made
available to the participants through an open-source software platform.

I. TRACK DEFINITION

For this challenge, we consider that a track is a temporal series of subsequent spatial positions. In the case of a 3D image
sequence, the spatial position at a given time point t ≥ 0 is a vector (x(t), y(t), z(t)), with x(t), y(t), and z(t) the coordinates
at this time along the x-axis, y-axis, and z-axis, respectively. A track θ that exists from time tinit ≥ 0 to time tend ≥ tinit
is therefore defined as the set θ = {θ(t) = (x(t), y(t), z(t)), with t = tinit . . . tend}. Note that we do not allow for missing
positions in the interval (tinit . . . tend). It is the responsibility of the tracking method to provide a full sequence of subsequent
positions. Missing positions are marked as non-matching and are penalized as described below.

II. DISTANCE BETWEEN TWO TRACKS

For the purpose of track distance measurement, we use the following gated Euclidian distance between two positions θ1(t)
and θ2(t):

‖θ1(t)− θ2(t)‖2,ε , min(‖θ1(t)− θ2(t)‖2, ε),

with ‖ · ‖2 the standard `2-norm of R3, and ε ∈ R+. The rationale behind the use of the gate ε is to limit the penalization of
tracks that separate. When two tracks are more than ε apart, it is indeed considered that their positions do not match. In this
case, it is not relevant to measure the distance between their positions and a penalty ε is considered instead. In the context of
the particle tracking challenge, the value of ε is set to 5 pixels.

It may happen that two tracks have different temporal supports. For instance, θ1 may exist at a given time t for which
θ2 does not. In this case, we consider that tracks do not match at this time. It leads us to apply a penalty ε and to use the
abuse of notation ‖θ1(t) − θ2(t)‖2,ε = ε. Along the same line, if none of the two tracks are defined at time t, we write:
‖θ1(t)− θ2(t)‖2,ε = 0. This allows for a compact formulation of the distance d between tracks that is used for the challenge:

d(θ1, θ2) =

T−1∑
t=0

‖θ1(t)− θ2(t)‖2,ε,

with T the length of the image sequence.

III. DISTANCE BETWEEN TRACK SETS AND OPTIMAL PAIRING

Let us denote X = {θkX , for k = 1 . . . |X |} an ordered set of ground-truth tracks that is provided by the challenge organizers,
and Y a set of candidate tracks whose quality needs to be assessed with respect to X . Because some tracks in X may not match
a track in Y , we extend Y with |X | dummy tracks that are empty. We denote Ỹ this extended set of tracks. We also denote ΩY
the ensemble of ordered sets of tracks that can be obtained by taking |X | elements from Ỹ . We compute the distance between
any element Z ∈ ΩY and X as the sum of the distances between the |X | pairs of tracks defined by the ordering of the sets.
This allows us to define the distance between X and Y as the minimum distance between X and an element of ΩY :

d(X ,Y) = min
Z∈ΩY

|X |∑
k=1

d(θkX , θ
k
Z)

Building the set of tracks Z? ∈ ΩY that gives minimum distance to X involves reordering Ỹ and taking a subset of |X |
elements from it. This task can be viewed as a rectangular assignment problem between the set of tracks X and Ỹ . Because of
the additive and positive nature of the costs of association between tracks, this problem can be solved efficiently. In practice,
we use the Munkres algorithm that gives the optimal solution in polynomial time.
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IV. PERFORMANCE MEASURES

Several indices to assess the quality of a candidate set of tracks Y are computed based on the optimal pairing (X ,Z?) as
defined above:

1) The distance d(X ,Y), and the normalized score:

α(X ,Y) , 1− d(X ,Y)/d(X , ∅),

where ∅ stands for the set of |X | dummy tracks. By definition of ‖ · ‖2,ε, the minimal value of d(X ,Y) is 0. Still by
definition, d(X , ∅) is an upper bound of d(X ,Y). Indeed, a pair of tracks (θX , θY) is guaranteed not to be selected by
the optimization process if d(θX , θY) is larger than the distance between θX and a dummy track. The normalized score
α(X ,Y) therefore lies in the interval [0, 1]. It takes value 1 if the pairs of tracks in X and Z? exactly match. It takes
value 0 if no valid match has been found: Z? = ∅. It quantifies the quality of the best pairing of tracks, regardless of
the tracks in Y that are not selected in Z?.

2) The criterion

β(X ,Y) ,
d(X , ∅)− d(X ,Y)

d(X , ∅) + d(Ȳ, ∅Ȳ)

where Ȳ = (Ỹ \ Z?) ∩ Y stands for the set of tracks in Y that have not been selected in Z? and ∅Ȳ denotes the set of
dummy tracks of size |Ȳ|. A track in Y may not be selected in Z? because association with other candidate tracks or
dummy tracks have been preferred over it. This kind of spurious track typically consists of a combination of positions
corresponding to different reference tracks or to erroneous positions originating from clutter. We thus term such a track
spurious. The criterion β(X ,Y) lies in [0, α(X ,Y)]. It take values α(X ,Y) if there is no spurious track in Y , that is if
Ȳ is empty.

The two criteria α and β account for both association and localization error. For a more detailed characterization of tracking
algorithm performance, it is useful to separate these two factors. We exclude the localization error by quantifying the number
of matching positions between the pairs of tracks (X ,Z?). Two positions at a given time t are counted as a matching pair if
they are both non-dummy and if ‖θX (t)− θZ?(t)‖2,ε < ε. Otherwise, the pair is counted as non-matching (with the exception
of two dummy positions, which are not counted). We therefore compute:

3) The number of matching pairs of positions in (X ,Z?). They are called true positive pairs of positions and are denoted
TP .

4) The number of non-matching pairs of positions in (X ,Z?). They are called false negative pairs of detections because
they correspond to dummy positions or non-matching positions that are associated with track positions in the reference
set X . They are denoted FN .

5) The number of positions in Ȳ . They are called false positive positions and are denoted FP .
6) The Jaccard similarity index for positions:

JSC ,
TP

TP + FN + FP

which lies in the interval [0, 1]. It takes value 1 only if all positions in (X ,Z?) are matching and if Ȳ is empty.
We introduce similar criteria, but that quantify the tracking quality at the track level:
7) The number of tracks in Z? that are not dummy tracks. These tracks are selected because they contain a majority of

matching detections with a single track in X . They are called true positive tracks and their number is denoted TPθ.
8) The number of tracks in Z? that are dummy tracks. These false negative tracks are selected because there exist tracks in
X for which a single track in Y with a majority of matching positions cannot be found. We denote FNθ their number.

9) The number of tracks in Ȳ . Their number is denoted FPθ, for false positive tracks.
10) The Jaccard similarity index for tracks:

JSCθ ,
TPθ

TPθ + FNθ + FPθ

Finally, we consider criteria that exclude the association error, and quantify only the localization error. Since non-matching
positions are already penalized by the above scores, we limit the assessment of localization error to matching positions:

11) The root mean-square error (RMSE) of true positive pairs (TP as above).
12) The minimum error in TP pairs.
13) The maximum error in TP pairs.
14) The standard deviation of error in TP pairs.

We believe that these 14 criteria provide a complete characterization of tracking performance.


